Abstract

AbstractLet U be a finite dimensional vector space over an infinite field F. Let U(r) denote the r–th symmetric product space over U. Let T: U(r) → U(s) be a linear transformation which sends nonzero decomposable elements to nonzero decomposable elements. Let dim U ≥ s + 1. Then we obtain the structure of T for the following cases: (I) F is algebraically closed, (II) F is the real field, and (III) T is injective.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.