Abstract

It has recently been suggested that a breakdown of electroneutrality occurs in highly confined nanopores that are encompassed by a dielectric material. This work elucidates the conditions for this breakdown. We show that the breakdown within the pore results from the response of the electric field within the dielectric. Namely, we show that this response is highly sensitive to the boundary condition at the dielectric edge. The standard Neumann boundary condition of no-flux predicts that the breakdown does not occur. However, a Dirichlet boundary condition for a zero-potential predicts a breakdown. Within this latter scenario, the breakdown exhibits a dependence on the thickness of the dielectric material. Specifically, infinite thickness dielectrics do not exhibit a breakdown, while dielectrics of finite thickness do exhibit a breakdown. Numerical simulations confirm theoretical predictions. The breakdown outcomes are discussed with regard to single pore systems and multiple pore systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.