Abstract
Due to the tighter budget for pavement management, schedules of inspection activities should be jointly optimized with the maintenance and reconstruction (M&R) plans for pavement systems. Conducting inspections every year is unnecessary and will decrease the budget for M&R activities, while infrequent inspections may lead to suboptimal M&R planning due to the lack of accurate information. This paper presents a methodology for jointly optimizing the inspection scheduling and M&R planning for pavement systems, considering model uncertainty and facility-specific heterogeneity. The problem is defined as a Partially Observable Markov Decision Process (POMDP) model, accounting for the tradeoff between the information value and inspection costs. Moreover, a statistical learning method is used to update the prediction of pavement conditions using the collected inspection data and, eventually, improve the condition-based decisions. This “belief update” process can gradually reduce the model uncertainty as the dataset size increases. We demonstrate the proposed stochastic optimization framework through a numerical example with a system of fifty heterogenous pavement facilities under a combined budget for inspection and M&R activities. Several managerial insights and implications are discussed. For example, the optimal inspection frequencies are less sensitive to the budget; and the agency should perform fewer reconstructions and more rehabilitations when the budget is limited.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Transportation Research Part C: Emerging Technologies
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.