Abstract

Corrosion is one of the major causes of failure in pipelines for transporting oil and gas products. To mitigate the impact of this problem, organizations perform different maintenance operations, including detecting corrosion, determining corrosion growth, and implementing optimal maintenance policies. This paper proposes a partially observable Markov decision process (POMDP) model for optimizing maintenance based on the corrosion progress, which is monitored by an inline inspection to assess the extent of pipeline corrosion. The states are defined by dividing the deterioration range equally, whereas the actions are determined based on the specific states and pipeline attributes. Monte Carlo simulation and a pure birth Markov process method are used for computing the transition matrix. The cost of maintenance and failure are considered when calculating the rewards. The inline inspection methods and tool measurement errors may cause reading distortion, which is used to formulate the observations and the observation function. The model is demonstrated with two numerical examples constructed based on problems and parameters in the literature. The result shows that the proposed model performs well with the added advantage of integrating measurement errors and recommending actions for multiple-state situations. Overall, this discrete model can serve the maintenance decision-making process by better representing the stochastic features.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.