Abstract

This paper proposes a continuous state partially observable Markov decision process (POMDP) model for the corrosion maintenance of oil and gas pipelines. The maintenance operations include complex and extensive activities to detect the corrosion type, determine its severity, predict the deterioration rate, and plan future inspection (monitoring) schemes and maintenance policy. A POMDP model is formulated as a decision-making support tool to effectively handle partially observed corrosion defect levels. It formulates states as the pipeline’s degradation level using a probability distribution. Inline inspection (ILI) methods estimate the latest state of the pipeline, which also defines the initial state of the optimization process. The set of actions comprises corrosion mitigation operations. The errors associated with the ILI method are used to construct the observation function for the model. The sum of inspection, maintenance operations, and failure costs for a given state and action are formulated as rewards. Numerical experiments are made based on data collected from the literature. The results showed that different policies, whether derived from solvers (theoretical) or determined from practical experience, can be compared to identify the best maintenance alternative using the model. It was also observed that the choice of the solvers is important since they affect the discounted rewards and the run time to obtain them. The model approximates the parameters and uncertainty associated with the propagation of corrosion, proficiency of inspection methods, and implementation of maintenance policies. Overall, it can be applied to improve the maintenance decision-making process for the oil and gas pipeline as it incorporates the stochastic features of the operation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call