Abstract

Concrete mix design is a process based on sound technical principles for proportioning of ingredients in right quantities. This paper demonstrates the applicability of Artificial Neural Networks (ANN) Model for approximate proportioning of concrete mixes. For ANN a trained back propagation neural network is integrated in the model to learn experimental data pertaining to predict 7, 14 and 28-day compressive strength which have been loaded into a model, containing 55 concrete mixtures. The ANN model proposed is based on 5 input parameters such as cement, sand, coarse aggregate, and water and fineness modulus. The proposed concrete mix proportion design is expected to reduce the number of trials in laboratory as well as field, saves cost of material as well as labor and also saves time as it provides higher accuracy. The concrete designed is expected to have higher durability and hence is economical.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.