Abstract

The swelling behaviour of the general matrix of both normal and abnormally softened articular cartilage was investigated in the context of its relationship to the underlying subchondral bone, the articular surface, and with respect to the primary structural directions represented in its strongly anisotropic collagenous architecture. Swelling behaviours were compared by subjecting tissue specimens under different modes of constraint to a high swelling bathing solution of distilled water and comparing structural changes imaged at the macroscopic, microscopic and ultrastructural levels of resolution. Near zero swelling was observed in the isolated normal general matrix with minimal structural change. By contrast the similarly isolated softened general matrix exhibited large-scale swelling in both the transverse and radial directions. This difference in dimensional stability was attributed to fundamentally different levels of fibril interconnectivity between the 2 matrices. A model of structural transformation is proposed to accommodate fibrillar rearrangements associated with the large-scale swelling in the radial and transverse directions in the softened general matrix.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.