Abstract

The mechanical properties of demineralized bovine cortical femur bone were investigated by cyclic loading–unloading compression in three anatomical directions (longitudinal, radial, transverse) within the physiological strain range. The loading responses in the radial and transverse directions were nearly linear up to 2% strain, while the response in longitudinal direction was strongly non-linear in that range. The unloading responses were non-linear for each anatomical direction, giving rise to overall loading–unloading hysteresis and cyclic dissipation of energy. The mechanical properties were observed to be anisotropic: the radial direction was found to be the most energy dissipative, while the longitudinal direction appeared to be the stiffest bone direction. The cyclic loading mostly affects the bone stiffness in the radial and transverse directions, while the longitudinal direction was found to be the least affected. These anisotropic properties can be attributed to the differences in collagen fibers alignment and different microstructural architecture in three different anatomical bone directions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.