Abstract
Bone is a heterogeneous, anisotropic natural composite material. Several studies have measured human cortical bone elastic properties in different anatomical directions and found that the Young's modulus was highest in the longitudinal, followed by the tangential and then by the radial direction. This study compared the Young's modulus, the accumulated microdamage and local strains related to the failure process in these three anatomical directions. Cortical bone samples (≈360μm×360μm) were mechanically tested in three-point bending and concomitantly imaged to assess local strains using digital image correlation technique. The bone whitening effect was used to detect microdamage formation and propagation. No statistically significant difference was found between the Young's modulus of longitudinal (9.4±2.0GPa) and tangential (9.9±1.8GPa) bovine bone samples, as opposed to previous findings on human bone samples. The same similarity was found for the whitening values (5000±1900pix/mm2 for longitudinal, 5800±2600pix/mm2 for tangential) and failure strains (16.8±7.0% for longitudinal, 19.1±3.2% for tangential) as well. However, significantly lower values were observed in the radial samples for Young's modulus (5.92±0.77GPa), whitening (none or minimal) and failure strain (10.8±3.8%). For strains at whitening onset, no statistically significant difference was seen for the longitudinal (5.1±1.6%) and radial groups (4.2±2.0%), however, the tangential values were significantly greater (7.0±2.4%). The data implies that bovine cortical bone tissue in long bones is designed to withstand higher loads in the longitudinal and tangential directions than in the radial one. A possible explanation of the anisotropy in the mechanical parameters derived here might be the structure of the tissues in the three directions tested.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.