Abstract

Contractions of the uterus play an important role in menstruation and fertility, and contractile dysfunction can lead to chronic diseases such as endometriosis. However, the structure and function of the uterus are difficult to interrogate in humans, and thus animal studies are often employed to understand its function. In rats, anatomical studies of the uterus have typically been based on histological assessment, have been limited to small segments of the uterine structure, and have been time-consuming to reconstruct at the organ scale. This study used micro-computed tomography imaging to visualise the muscle structures in the entire non-pregnant rat uterus and assess its use for 3D virtual histology. An assessment of the rodent uterus is presented to (i) quantify muscle thickness variations along the horns, (ii) identify predominant fibre orientations of the muscles and (iii) demonstrate how the anatomy of the uterus can be mapped to 3D volumetric meshes via virtual histology. Micro-computed tomography measurements were validated against measurements from histological sections. The average thickness of the myometrium was found to be 0.33 ± 0.11 mm and 0.31 ± 0.09 mm in the left and right horns, respectively. The micro-computed tomography and histology thickness calculations were found to correlate strongly at different locations in the uterus: at the cervix, r = 0.87, and along the horn from the cervical end to the ovarian end, respectively, r = 0.77, r = 0.89 and r = 0.54, with p < 0.001 in every location. This study shows that micro-computed tomography can be used to quantify the musculature in the whole non-pregnant uterus and can be used for 3D virtual histology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.