Abstract

Knowledge about the amino acid requirements and the response of pigs to the amino acid supply is essential in feed formulation. A deficient AA supply results in a reduction in performance while an oversupply is costly and leads to excessive nitrogen excretion with a potentially negative environmental impact. Amino acid requirements are determined to a large extent by the protein deposition in the body and, for lactating sows, by the protein exported in the milk. The concept of ideal protein was developed more than 50 years ago and refers to a protein with an amino acid profile that exactly meets the animal’s requirement so that all amino acids are equally limiting for performance. Because Lys typically is the first-limiting amino acid, the ideal amino acid profile is often expressed relative to Lys. Although the ideal protein profile is often assumed to be constant for a given production stage, (small) changes in the ideal protein profile can occur within a production stage. This can be caused by changes in the relative contribution of the different components of amino acid requirements during the productive life on the animal (e.g. changes in the relative contribution of growth and maintenance). Amino acids requirements can be determined experimentally using dose–response studies. The design of the study, the chosen response criterion, and the statistical model affect the requirement estimate. Although considerable experimental work has been carried out to determine the requirements for Lys, Met, Thr, and Trp in growing pigs (and to a lesser extent in sows), little is known about the requirements for the other essential amino acids. Experimental dose–response studies generally focus on the requirement and less on the overall response (i.e. what are the consequences of an amino acid deficiency?). This latter aspect is, to some extent, accounted for in modelling approaches that quantify the response of the animal to the amino acid supply in a dynamic way. The paper describes the origin of ideal protein and illustrates how fundamental concepts of amino acid nutrition have been integrated in practical modeling approaches for the nutrition of growing pigs and sows.

Highlights

  • The efficiency with which dietary protein is used by the pig depends of the digestibility of protein and its constituent amino acids (AA) and the content and balance among Amino acids (AA) in relation to the animal’s requirement

  • Amino acids given in excess will be deaminated and the resulting urea will be excreted in the urine

  • Different ideal protein profiles have been proposed for growing pigs and sows [1,8,9,11,15,16,17,25,30,35,36]

Read more

Summary

Introduction

The efficiency with which dietary protein is used by the pig depends of the digestibility of protein and its constituent amino acids (AA) and the content and balance among AA in relation to the animal’s requirement. Amino acids given in excess will be deaminated and the resulting urea will be excreted in the urine. Finding a good balance between AA supply and AA requirement is important for different reasons. Protein is a relatively expensive nutrient and many countries rely on imported protein sources for animal feeding. The inefficient use of dietary protein contributes to nitrogen excretion and the environmental impact of animal production is a problem in different pig producing areas in the world. With the increasing availability of crystalline AA such as L-Lys, DL-Met

Objectives
Findings
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.