Abstract
We introduce the concept of concatenated tensor networks to efficiently describe quantum states. We show that the corresponding concatenated tensor network states can efficiently describe time evolution and possess arbitrary block-wise entanglement and long-ranged correlations. We illustrate the approach for the enhancement of matrix product states, i.e. one-dimensional (1D) tensor networks, where we replace each of the matrices of the original matrix product state with another 1D tensor network. This procedure yields a 2D tensor network, which includes—already for tensor dimension 2—all states that can be prepared by circuits of polynomially many (possibly non-unitary) two-qubit quantum operations, as well as states resulting from time evolution with respect to Hamiltonians with short-ranged interactions. We investigate the possibility of efficiently extracting information from these states, which serves as the basic step in a variational optimization procedure. To this aim, we utilize the known exact and approximate methods for 2D tensor networks and demonstrate some improvements thereof, which are also applicable e.g. in the context of 2D projected entangled pair states. We generalize the approach to higher dimensional and tree tensor networks.
Highlights
ÐÐ ÓÔ ÒoÁ o 1⁄2 ́ ÓÐÓÖ ÓÒÐ Ò μoμ Ö Ô Ð Ö ÔÖ × ÒØ Ø ÓÒ Ó 1⁄2 Ø Ò×ÓÖ Ò ØÛÓÖÅÈËμo Ì ÓÜ × ÓÖÖ ×ÔÓÒ ØÓ Ø Ò×ÓÖ× ̧ Û Ö × Ö Ò × Ö ×ÙÑÑ ÓÚ Öo ÇÔ Ò Ò × ÓÖÖ ×ÔÓÒ ØÓ Ô Ý× Ð Ô ÖØ Ð × ́Ö Ø Ò×ÓÖ×μoμ Ó Ø Ø Ò×ÓÖ× Ò Ø ÓÖ Ò Ð Ø Ò×ÓÖ Ò ØÛÓÖ × Ö ÔÐ Ý 1⁄2 Ø Ò×ÓÖ Ò ØÛÓÖÑ 1 ØÖ Ü ÔÖÓ Ù Ø ÓÔ Ö ØÓÖμ ÖÖ Ò Ò y1 Ö Ø ÓÒo ÙÜ Ð ÖÝ Ø Ò1 ×ÓÖ× ́ÒÓ ÓÔ Ò Ò ×μ Ö Ö ÛÒ Ò ÐÙ o Ì × Ð × ØÓ 3⁄4 Ø Ò×ÓÖ Ò ØÛÓÖ o
ÓÑÔÙØ Ø ÓÒ ÐÐÝ Ö ÔÖÓ Ð Ñ ÒÁ o 3⁄4 ́ ÓÐÓÖ ÓÒÐ Ò μo Ü ÑÔÐ × Ó ÓÒ Ø Ò Ø 3⁄4 Ø Ò×ÓÖ Ò ØÛÓÖ ×Ø Ø ×o Ì ÓÜ × ÓÖÖ ×ÔÓÒ ØÓ Ø Ò×ÓÖ× ̧ Û Ö Ó ÒØ Ò × Ö ×ÙÑÑ ÓÚ Öo ÇÔ Ò Ò × ÓÖÖ ×ÔÓÒ ØÓ Ô Ý× Ð Ô ÖØ Ð × ́Ö Ø Ò×ÓÖ×μ Û Ð ÙÜ Ð ÖÝ Ø Ò×ÓÖ× ́ÒÓ ÓÔ Ò Ò ×μ.
ÓÖ ÞÓÒØ Ð Ö Ø ÓÒoμ Ó Ø ÓÖ Ò Ð Ø Ò×ÓÖ× × Ö ÔÐ Ý 3⁄4 Ø Ò×ÓÖ Ò ØÛÓÖÓ × Þ 3×3μ ÖÖ Ò Ò Ø × Ñ ÔÐ Ò × Ø ÓÖ Ò Ð 3⁄4 Ø Ò×ÓÖ Ò ØÛÓÖ oμ ÓØÒØÐØÒ×ÓÖ× × Ö ÔÐ Ý Ò ÅÈË Ô ÖÔ Ò ÙÐ Ö ØÓ Ø ÓÖ Ò Ð ÔÐ Òz1 Ö Ø ÓÒμo Ì × Ð × ¿ Ø Ò×ÓÖ Ò ØÛÓÖ ×ØÖÙ ØÙÖ o
Summary
Á o 1⁄2 ́ ÓÐÓÖ ÓÒÐ Ò μoμ Ö Ô Ð Ö ÔÖ × ÒØ Ø ÓÒ Ó 1⁄2 Ø Ò×ÓÖ Ò ØÛÓÖÅÈËμo Ì ÓÜ × ÓÖÖ ×ÔÓÒ ØÓ Ø Ò×ÓÖ× ̧ Û Ö × Ö Ò × Ö ×ÙÑÑ ÓÚ Öo ÇÔ Ò Ò × ÓÖÖ ×ÔÓÒ ØÓ Ô Ý× Ð Ô ÖØ Ð × ́Ö Ø Ò×ÓÖ×μoμ Ó Ø Ø Ò×ÓÖ× Ò Ø ÓÖ Ò Ð Ø Ò×ÓÖ Ò ØÛÓÖ × Ö ÔÐ Ý 1⁄2 Ø Ò×ÓÖ Ò ØÛÓÖÑ 1 ØÖ Ü ÔÖÓ Ù Ø ÓÔ Ö ØÓÖμ ÖÖ Ò Ò y1 Ö Ø ÓÒo ÙÜ Ð ÖÝ Ø Ò1 ×ÓÖ× ́ÒÓ ÓÔ Ò Ò ×μ Ö Ö ÛÒ Ò ÐÙ o Ì × Ð × ØÓ 3⁄4 Ø Ò×ÓÖ Ò ØÛÓÖ o
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have