Abstract
Tensor network (TN), a young mathematical tool of high vitality and great potential, has been undergoing extremely rapid developments in the last two decades, gaining tremendous success in condensed matter physics, atomic physics, quantum information science, statistical physics, and so on. In this lecture notes, we focus on the contraction algorithms of TN as well as some of the applications to the simulations of quantum many-body systems. Starting from basic concepts and definitions, we first explain the relations between TN and physical problems, including the TN representations of classical partition functions, quantum many-body states (by matrix product state, tree TN, and projected entangled pair state), time evolution simulations, etc. These problems, which are challenging to solve, can be transformed to TN contraction problems. We present then several paradigm algorithms based on the ideas of the numerical renormalization group and/or boundary states, including density matrix renormalization group, time-evolving block decimation, coarse-graining/corner tensor renormalization group, and several distinguished variational algorithms. Finally, we revisit the TN approaches from the perspective of multi-linear algebra (also known as tensor algebra or tensor decompositions) and quantum simulation. Despite the apparent differences in the ideas and strategies of different TN algorithms, we aim at revealing the underlying relations and resemblances in order to present a systematic picture to understand the TN contraction approaches.
Highlights
Comes mathematics, a new world we made by numbers and symbols, where the nature is reproduced by laws and theorems in an extremely simple, beautiful, and unprecedentedly accurate manner
In the following as two straightforward examples, we show that projected entangled pair state (PEPS) can represents non-trivial physical states including nearest-neighbor resonating valence bond (RVB) and Z2 spin liquid states
We mainly focused on the infinite PEPS (iPEPS) algorithm that simulates the ground states of 2D lattice models
Summary
Abstract One characteristic that defines us, human beings, is the curiosity of the unknown. We have been trying to use any methods that human brains can comprehend to explore the nature: to mimic, to understand, and to utilize in a controlled and repeatable way. Comes mathematics, a new world we made by numbers and symbols, where the nature is reproduced by laws and theorems in an extremely simple, beautiful, and unprecedentedly accurate manner. With the explosive development of digital sciences, computer was created. It provided us the third way to investigate the nature, a digital world whose laws can be ruled by ourselves with codes and algorithms to numerically mimic the real universe. We briefly review the history of tensor network algorithms and the related progresses made recently.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.