Abstract

The Computing-in-Memory (CiM) is one of the best solutions to overcome the data transferring limitation between memory and processor. Moreover, spintronics based devices such as spin-transfer torque magnetic memory (STTM) and spin-orbit torque magnetic memory (SOTM) are emerging as viable contenders for CiM applications. SOTM along with their driving CMOS counterparts show a huge reduction in area and add nonvolatility to CiM designs. In this work, energy-efficient CiM working is performed using Voltage-Controlled SOTM (V-SOTM) where logic operations are implemented within the memory array. The operational conditions and working for performing logic within the memory blocks are elaborated in detail. Further, V-SOTM based full adder (FA) for CiM is presented. Performance analysis has been carried out and compared with exiting CMOS, STTM, SOTM based FA. V-SOTM FA shows 53.98% and 2.7% reduction in logic power and data transfer energy, respectively when compared to SOTM based CiM FA. Furthermore, the VCMA voltage variations for V-SOTM FA is carried out that provide performance improvement with varying voltage pulse. Finally, the effect of parametric variations is carried out using Monte Carlo analysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.