Abstract

This paper discusses approximations of continuous and mixed-integer non-linear optimization problems via piecewise linear functions. Various variants of circle cutting problems are considered, where the non-overlap of circles impose a non-convex feasible region. While the paper is written in an “easy-to-understand” and “hands-on” style which should be accessible to graduate students, also new ideas are presented. Specifically, piecewise linear functions are employed to yield mixed-integer linear programming problems which provide lower and upper bounds on the original problem, the circle cutting problem. The piecewise linear functions are modeled by five different formulations, containing the incremental and logarithmic formulations. Another variant of the cutting problem involves the assignment of circles to pre-defined rectangles. We introduce a new global optimization algorithm, based on piecewise linear function approximations, which converges in finitely many iterations to a globally optimal solution. The discussed formulations are implemented in GAMS. All GAMS-files are available for download in the Electronic supplementary material. Extensive computational results are presented with various illustrations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.