Abstract
Abstract Branch-and-bound in combination with convex underestimators constitute the basis for many algorithms in global nonconvex mixed-integer nonlinear programming (MINLP). Another option is to rely on reformulation-based techniques such as the α signomial global optimization (αSGO) algorithm, where power and exponential transformations for signomial or polynomial function and the α reformulation (αR) technique for general nonconvex twice-differentiable functions are used to reformulate the nonconvex problem. The transformations are approximated using piecewise linear functions (PLFs), resulting in a convex relaxation of the original nonconvex problem in an extended variable space. The solution to this reformulated problem provides a lower bound to the global minimum (of a minimization problem), and by iteratively refining the PLFs, the e-global solution can be obtained. A drawback with many reformulation-based techniques is that known convex envelopes cannot directly be utilized. However, in this paper, a formulation for expressing the convex envelope of bilinear terms in the αSGO framework is described, and it is shown that this improves the tightness of the lower bound.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have