Abstract

In this paper, we compute an algebraic decomposition of black-box rings in the generic ring model. More precisely, we explicitly decompose a black-box ring as a direct product of a nilpotent black-box ring and unital local black-box rings, by computing all its primitive idempotents. The algorithm presented in this paper uses quantum subroutines for the computation of the p-power parts of a black-box ring and then classical algorithms for the computation of the corresponding primitive idempotents. As a by-product, we get that the reduction of a black-box ring is also a black-box ring. The first application of this decomposition is an extension of the work of Maurer and Raub (2007) on representation problem in black-box finite fields to the case of reduced p-power black-box rings. Another important application is an IND-CCA1 attack for any ring homomorphic encryption scheme in the generic ring model. Moreover, when the plaintext space is a finite reduced black-box ring, we present a plaintext-recovery attack based on representation problem in black-box prime fields. In particular, if the ciphertext space has smooth characteristic, the plaintext-recovery attack is effectively computable in the generic ring model.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.