Abstract

A finite ring R and a weight w on R satisfy the Extension Property if every R-linear w-isometry between two R-linear codes in Rn extends to a monomial transformation of Rn that preserves w. MacWilliams proved that finite fields with the Hamming weight satisfy the Extension Property. It is known that finite Frobenius rings with either the Hamming weight or the homogeneous weight satisfy the Extension Property. Conversely, if a finite ring with the Hamming or homogeneous weight satisfies the Extension Property, then the ring is Frobenius.This paper addresses the question of a characterization of all bi-invariant weights on a finite ring that satisfy the Extension Property. Having solved this question in previous papers for all direct products of finite chain rings and for matrix rings, we have now arrived at a characterization of these weights for finite principal ideal rings, which form a large subclass of the finite Frobenius rings. We do not assume commutativity of the rings in question.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.