Abstract

In this paper, we present algorithms that compute large matchings in planar graphs with fixed minimum degree. The algorithms give a guarantee on the size of the computed matching and run in linear time. Thus they are faster than the best known algorithm for computing maximum matchings in general graphs and in planar graphs, which run in O ( n m ) and O ( n 1.188 ) time, respectively. For the class of planar graphs with minimum degree 3, the bounds we achieve are known to be the best possible. Further, we discuss how minimum degree 5 can be used to obtain stronger bounds on the matching size.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.