Abstract
It is known that finding a perfect matching in a general graph is AC0-equivalent to finding a perfect matching in a 3-regular (i.e. cubic) graph. In this paper we extend this result to both, planar and bipartite cases. In particular we prove that the construction problem for perfect matchings in planar graphs is as difficult as in the case of planar cubic graphs like it is known to be the case for the famous Map Four-Coloring problem. Moreover we prove that the existence and construction problems for perfect matchings in bipartite graphs are as difficult as the existence and construction problems for a weighted perfect matching of O(m) weight in a cubic bipartite graph.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.