Abstract
Let Fq[T] be the polynomial ring over a finite field Fq. We study the endomorphism rings of Drinfeld Fq[T]-modules of arbitrary rank over finite fields. We compare the endomorphism rings to their subrings generated by the Frobenius endomorphism and deduce from this a refinement of a reciprocity law for division fields of Drinfeld modules proved in our earlier paper. We then use these results to give an efficient algorithm for computing the endomorphism rings and discuss some interesting examples produced by our algorithm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.