Abstract
In this paper, we establish an explicit higher reciprocity law for the polynomial ring over a nonprincipal ultraproduct of finite fields. Such an ultraproduct can be taken over the same finite field, which allows to recover the classical higher reciprocity law for the polynomial ring Fq[t] over a finite field Fq that is due to Dedekind, Kühne, Artin, and Schmidt. On the other hand, when the ultraproduct is taken over finite fields of unbounded cardinalities, we obtain an explicit higher reciprocity law for the polynomial ring over an infinite field in both characteristics 0 and p>0 for some prime p. We then use the higher reciprocity law to prove an analogue of the Grunwald–Wang theorem for such a polynomial ring in both characteristics 0 and p>0 for some prime p.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.