Abstract

Positron annihilation spectroscopy is a sensitive probe for studying the electronic structure of defects in solids. The high-momentum part of the Doppler-broadened spectra can be used to distinguish different elements at the annihilation site. This can be achieved by using a two-detector coincidence system, which reduces the peak to background ratio dramatically. The coincident events have to be extracted from a two-dimensional spectrum that is recorded by two high-purity germanium detectors. For this purpose the computer program MePASto was developed, which allows an automated data reduction from such Doppler-coincidence spectra, supplemented by a post-processing unit for data analysis. Additionally a case study of the identification of defect sites in an intermetallic compound is presented.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.