Abstract
Positron annihilation spectroscopy is a sensitive probe for studying the electronic structure of defects in solids. The high momentum part of the Doppler-broadened annihilation spectra can be used to distinguish different elements. This is achieved by using a new two-detector coincidence system and by imposing appropriate kinematic cuts to exclude background events. The new setup improves the peak to background ratio in the annihilation spectrum to {approximately}10{sup 5}. As a result, the line shape variations arising from different core electrons can be studied. The new approach adds elemental specificity to the Doppler broadening technique, and is useful in studying elemental variations around a defect site. Results from several case studies are reviewed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.