Abstract

A Lie (super)algebra with a nondegenerate invariant symmetric bilinear form B is called a nis-(super)algebra. The double extension of a nis-(super)algebra is the result of simultaneous adding to a central element and a derivation so that is a nis-algebra. Loop algebras with values in simple complex Lie algebras are most known among the Lie (super)algebras suitable to be doubly extended. In characteristic 2, the notion of double extension acquires specific features. Restricted Lie (super)algebras are among the most interesting modular Lie superalgebras. In characteristic 2, using Grozman’s Mathematica-based package SuperLie, we list double extensions of restricted Lie superalgebras preserving the nondegenerate closed 2-forms with constant coefficients. The results are proved for the number of indeterminates ranging from 4 to 7—sufficient to conjecture the pattern for larger numbers. Considering multigradings allowed us to accelerate computations up to 100 times.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.