Abstract

A Lie (super)algebra with a non-degenerate invariant symmetric bilinear form will be called a NIS-Lie (super)algebra. The double extension of a NIS-Lie (super)algebra is the result of simultaneously adding to it a central element and an outer derivation so that the larger algebra has also a NIS. Affine loop algebras, Lie (super)algebras with symmetrizable Cartan matrix over any field, Manin triples, symplectic reflection (super)algebras are among the Lie (super)algebras suitable to be doubly extended.We consider double extensions of Lie superalgebras in characteristic 2, and concentrate on peculiarities of these notions related with the possibility for the bilinear form, the center, and the derivation to be odd. Two Lie superalgebras we discovered by this method are indigenous to the characteristic 2.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.