Abstract

As is well-known, the dimension of the space spanned by the non-degenerate invariant symmetric bilinear forms (NISes) on any simple finite-dimensional Lie algebra or Lie superalgebra is equal to at most 1 if the characteristic of the algebraically closed ground field is not 2.We prove that in characteristic 2, the superdimension of the space spanned by NISes can be equal to 0, or 1, or 0|1, or 1|1; it is equal to 1|1 if and only if the Lie superalgebra is a queerification (defined in arXiv:1407.1695) of a simple classically restricted Lie algebra with a NIS (for examples, mainly in characteristic ≠2, see arXiv:1806.05505).We give examples of NISes on deformations (with both even and odd parameters) of several simple finite-dimensional Lie superalgebras in characteristic 2.We also recall examples of multiple NISes on simple Lie algebras over non-closed fields.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.