Abstract
Real-time performance and reliability are two critical indicators in cyber-physical production systems (CPPS). To meet strict requirements in terms of these indicators, it is necessary to solve complex job-shop scheduling problems (JSPs) and reserve considerable redundant resources for unexpected jobs before production. However, traditional job-shop methods are difficult to apply under dynamic conditions due to the uncertain time cost of transmission and computation. Edge computing offers an efficient solution to this issue. By deploying edge servers around the equipment, smart factories can achieve localized decisions based on computational intelligence (CI) methods offloaded from the cloud. Most works on edge computing have studied task offloading and dispatching scheduling based on CI. However, few of the existing methods can be used for behavior-level control due to the corresponding requirements for ultralow latency (10 ms) and ultrahigh reliability (99.9999% in wireless transmission), especially when unexpected computing jobs arise. Therefore, this paper proposes a dynamic resource prediction scheduling (DRPS) method based on CI to achieve real-time localized behavior-level control. The proposed DRPS method primarily focuses on the schedulability of unexpected computing jobs, and its core ideas are (1) to predict job arrival times based on a backpropagation neural network and (2) to perform real-time migration in the form of human-computer interaction based on the results of resource analysis. An experimental comparison with existing schemes shows that our DRPS method improves the acceptance ratio by 25.9% compared to the earliest deadline first scheme.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.