Abstract
We study the flow structure of supersonic jets rotating perpendicular to the streamwise direction using RANS simulations, and we assess the performance of different turbulence model rotation corrections. The Coriolis and centrifugal terms were added to the equations of motion to perform calculations in this non-inertial (rotating) frame of reference. An explicit, cell-centred, finite-volume numerical method, coupled to a k−ε turbulence model, was used for the computations. The turbulence model rotation corrections of Howard et al. (1980), Park and Chung (1999), and Cazalbou et al. (2005) were attempted. In the absence of experimental data for jets rotating perpendicular to the streamwise direction, the rotation corrections were examined against the available measurements of a swirling jet; the comparison of the numerical and experimental data indicates that the Cazalbou et al. (2005) and Park and Chung (1999) corrections improve the performace of the turbulence model. Simulations were then run of a supersonic jet rotating perpendicular to the stream direction at 0, 50, 100 and 150 rad/s, using no turbulence model rotation correction, and using the three rotation corrections. The results indicate that the Cazalbou et al. (2005) correction is more physical than the other two, as it yields results that are qualitatively consistent with the known effects of rotation: that turbulence is enhanced and suppressed on the concave and convex sides of a rotating jet centreline, respectively, and that the effect of rotation saturates as the rotation rate increases. The findings are in qualitative agreement with the available literature.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Computational Fluid Dynamics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.