Abstract

Since the discovery of graphene, 2D materials have captured the minds of scientists because of their attractive and unique electronic properties. In particular, magnetic 2D materials have become a subject of extensive discussions today. Using density functional theory calculations, it is shown that 2D SiN sheet (built out of nonmetallic main group atoms) is a ferromagnetic semiconducting material with a magnetic moment 1 μB per unit cell and an indirect bandgap of 1.55 eV. Calculated phonon spectrum and conducted ab initio molecular dynamics simulation reveal thermal and dynamical stability of the designed material. It is shown that the ferromagnetic state is stable up to 20 K. Magnetism of silicon mononitride can be described by the presence of an unpaired electron located on silicon atoms. The semiconducting and ferromagnetic properties of SiN monolayer open many opportunities for its potential use in spintronic and nanoelectronic devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.