Abstract

AbstractA new continuum approach to snowdrift modelling is introduced. In addition, numerical studies are carried out to identify the influence of time-varying wind conditions on snowdrift simulations. We compare the snowdrift patterns at Grimming mountain, Austria, derived using a time-averaged wind field and a time-varying wind field obtained from the numerical weather prediction model INCA. The results show significant differences in the deposition patterns and snow depth even after a 6 hour drift period. Using time-averaged boundary conditions leads to an underprediction of the resulting snow depth caused by averaging the wind speed, which lets gusts of wind disappear while snow transport is a non-linear function of the wind speed. Using numerical weather prediction models for snowdrift simulation therefore provides enhanced knowledge of the snow depth for local avalanche warning services.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call