Abstract
AbstractAccurate wind speed forecasts are essential for optimizing the efficiency of wind energy operations. Currently, there is limited research on nationwide assessment of predictive performance in multiple numerical weather prediction (NWP) models for wind speed at turbine hub height over China, especially concerning wind ramp events. Utilizing observed measurements from 262 wind farms, this study evaluated the performance of five NWP models in forecasting the mean state and spatiotemporal variations of wind speed as well as wind ramps. The results indicated that the European Center for Medium‐Range Weather Forecast Integrated Forecasting System (ECMWF–IFS) performed the best in forecasting climatological wind speed with a temporal correlation coefficient (TCC) of 0.74 and root mean square error (RMSE) of 2.34 m s−1. Although not widely utilized in China, the model from Meteo‐France (MF–ARPEGE) showed promising potential for wind energy forecasting with a TCC of 0.72 and RMSE of 2.45 m s−1. In terms of temporal variations of wind speed, all the models could reasonably predict the seasonal variations of wind speed, whereas only three NWP models were able to capture the characteristics of the observed diurnal variation. An error decomposition analysis further revealed that the primary source of predicted error for wind speed was the sequence error component (SEQU), indicating the model errors were mainly attributed from the temporal inconsistency between forecasts and observations. Furthermore, the occurrences of wind ramps were generally underestimated by NWP models, while this shortcoming can be partly overcome by improving the time resolution of NWP models.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.