Abstract

Array operations are useful in a lot of scientific codes. In recent years, several applications, such as the geological analysis and the medical images processing, are processed using array operations for three-dimensional (abbreviate to “3D”) sparse arrays. Due to the huge computation time, it is necessary to compress 3D sparse arrays and use parallel computing technologies to speed up sparse array operations. How to compress the sparse arrays efficiently is an important task for practical applications. Hence, in this paper, two strategies, inter- and intra-task parallelization (abbreviate to “ETP” and “RTP”), are presented to compress 3D sparse arrays, respectively. Each strategy was designed and implemented on Intel Xeon and Xeon Phi, respectively. From experimental results, the ETP strategy achieves 17.5\(\times \) and 18.2\(\times \) speedup ratios based on Intel Xeon E5-2670 v2 and Intel Xeon Phi SE10X, respectively; 4.5\(\times \) and 4.5\(\times \) speedup ratios for the RTP strategy based on these two environments, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.