Abstract
We develop a mean-field theory of compressibility effects in turbulent magnetohydrodynamics and passive scalar transport using the quasi-linear approximation and the spectral $\unicode[STIX]{x1D70F}$-approach. We find that compressibility decreases the $\unicode[STIX]{x1D6FC}$ effect and the turbulent magnetic diffusivity both at small and large magnetic Reynolds numbers, $Rm$. Similarly, compressibility decreases the turbulent diffusivity for passive scalars both at small and large Péclet numbers, $Pe$. On the other hand, compressibility does not affect the effective pumping velocity of the magnetic field for large $Rm$, but it decreases it for small $Rm$. Density stratification causes turbulent pumping of passive scalars, but it is found to become weaker with increasing compressibility. No such pumping effect exists for magnetic fields. However, compressibility results in a new passive scalar pumping effect from regions of low to high turbulent intensity both for small and large Péclet numbers. It can be interpreted as compressible turbophoresis of non-inertial particles and gaseous admixtures, while the classical turbophoresis effect exists only for inertial particles and causes them to be pumped to regions with lower turbulent intensity.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have