Abstract
Abstract The development of the formation and vortex pairing process in a two‐dimensional shear flow and the associated passive scalar (mass concentration or energy) transport process was numerically simulated by using the Vortex‐in‐Cell (VIC) Method combined with the Upwind Finite Difference Method. The visualized temporal distributions of passive scalars resemble the vortex structures and the turbulent passive scalar fluxes showed a definite connection with the occurrence of entrainment during the formation and pairing interaction of large‐scale vortex structures. The profiles of spatial‐averaged passive scalar o, turbulent passive scalar fluxes, u'o’ and v'o’, turbulent diffusivity of mean‐squared scalar fluctuation, v'o‘ 2, mean‐squared turbulent passive scalar fluctuation, √o‘ 2, skewness, and flatness factor of the probability density function of scalar fluctuation o’ at three different times are calculated. With the lateral dimension scaled by the momentum thickness and the velocity scaled by the v...
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.