Abstract

In our search for a biocompatible composite hemostatic dressing, we focused on the design of a novel biomaterial composed of two natural biological components, collagen and sodium alginate (SA), cross-linked using 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide/N-hydroxysuccinimide (EDC/NHS) and oxidized sodium alginate (OSA). We conducted a series of tests to evaluate the physicochemical properties, acute systemic toxicity, skin irritation, intradermal reaction, sensitization, cytotoxicity, and in vivo femoral artery hemorrhage model. The results demonstrated the excellent biocompatibility of the collagen/sodium alginate (C/SA)-based dressings before and after crosslinking. Specifically, the femoral artery hemorrhage model revealed a significantly shortened hemostasis time of 132.5 ± 12.82 s for the EDC/NHS cross-linked dressings compared to the gauze in the blank group (hemostasis time of 251.43 ± 10.69 s). These findings indicated that C/SA-based dressings exhibited both good biocompatibility and a significant hemostatic effect, making them suitable for biomedical applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call