Abstract

Engineering skin substitutes represent a prospective source of advanced therapy in repairing severe traumatic wounds. Sodium alginate (SA) and silk fibroin (SF) are natural biomaterials, which are widely used in tissue engineering and other fields because of their low price, high safety, and good biocompatibility. However, SA itself degrades slowly, its degradation mode is difficult to control, and the degradation products are difficult to remove from the body because of its high molecular weight. Therefore, the composite scaffolds were prepared by freeze-drying composite technology by using the Schiff base reaction between biocompatible SF and permeable oxidized sodium alginate (OSA). Sodium periodate was used as oxidant to modify SA. The results showed that higher oxidation degree of OSA could be obtained by increasing the proportion of oxidant, and the relative molecular weight of the oxidized products could also be reduced. The composite scaffolds were prepared by using sodium tetraborate as a crosslinking accelerator of the Schiff base reaction between OSA and SF. FT-IR confirmed that the Schiff base group appeared in the material. In vitro biodegradation experiments showed that the biodegradation of the composite scaffolds was controllable, and the cytocompatibility experiment showed that the composite scaffolds had good biocompatibility.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.