Abstract

We examine the verification of simple quantifiers in natural language from a computational model perspective. We refer to previous neuropsychological investigations of the same problem and suggest extending their experimental setting. Moreover, we give some direct empirical evidence linking computational complexity predictions with cognitive reality. In the empirical study we compare time needed for understanding different types of quantifiers. We show that the computational distinction between quantifiers recognized by finite-automata and push-down automata is psychologically relevant. Our research improves upon, the hypotheses and explanatory power of recent neuroimaging studies as well as provides evidence for the claim that human linguistic abilities are constrained by computational complexity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.