Abstract

We study the computational complexity of polyadic quantifiers in natural language. This type of quantification is widely used in formal semantics to model the meaning of multi-quantifier sentences. First, we show that the standard constructions that turn simple determiners into complex quantifiers, namely Boolean operations, iteration, cumulation, and resumption, are tractable. Then, we provide an insight into branching operation yielding intractable natural language multi-quantifier expressions. Next, we focus on a linguistic case study. We use computational complexity results to investigate semantic distinctions between quantified reciprocal sentences. We show a computational dichotomy between different readings of reciprocity. Finally, we go more into philosophical speculation on meaning, ambiguity and computational complexity. In particular, we investigate a possibility of revising the Strong Meaning Hypothesis with complexity aspects to better account for meaning shifts in the domain of multi-quantifier sentences. The paper not only contributes to the field of formal semantics but also illustrates how the tools of computational complexity theory might be successfully used in linguistics and philosophy with an eye towards cognitive science.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.