Abstract

In this Chapter I introduce the idea of semantic automata—simple computational devices corresponding to basic quantifiers in natural language. In line with a procedural approach to semantics, given a quantified sentence and a finite model, a semantic automaton computes the truth-value of this sentence in that model. In order to build the semantic automata theory, I first show how to encode finite models as strings of symbols, translating between generalized quantifier theory and formal language theory. With the help of this encoding I show what kind of automata correspond to particular quantifiers. This leads to a number of characterization results, for instance, a classic theorem of Van Benthem establishing equivalence between quantifiers definable in first-order logic (e.g., ‘more than 5’) and quantifiers recognizable by finite-automata. Quantifier ‘most’, which is not definable in first-order logic, will require a recognition device with some sort of unbounded working memory, e.g., a push-down automaton. The question arises: are these logical characterizations cognitively plausible? In the next chapter, I will argue that the answer is positive.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.