Abstract
Composing Text and Image to Image Retrieval (CTI-IR) aims at finding the target image, which matches the query image visually along with the query text semantically. However, existing works ignore the fact that the reference text usually serves multiple functions, e.g., modification and auxiliary. To address this issue, we put forth a unified solution, namely Hierarchical Aggregation Transformer incorporated with Cross Relation Network (CRN). CRN unifies modification and relevance manner in a single framework. This configuration shows broader applicability, enabling us to model both modification and auxiliary text or their combination in triplet relationships simultaneously. Specifically, CRN includes: 1) Cross Relation Network comprehensively captures the relationships of various composed retrieval scenarios caused by two different query text types, allowing a unified retrieval model to designate adaptive combination strategies for flexible applicability; 2) Hierarchical Aggregation Transformer aggregates top-down features with Multi-layer Perceptron (MLP) to overcome the limitations of edge information loss in a window-based multi-stage Transformer. Extensive experiments demonstrate the superiority of the proposed CRN over all three fashion-domain datasets. Code is available at github.com/yan9qu/crn.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.