Abstract
Multimodal Retrieval provides new paradigms and methods aimed at effectively searching through the enormous volume of data. Multimodal retrieval is a well studied problem often used in image retrieval. Most of the existing works in image retrieval under the pretext of multimodality stress on bridging the semantic gap by using both textual and visual features. In this paper, we use relevance feedback from the user-generated documents associated with the images for expanding textual query and study its effect on both image and text retrieval. We employ a topic decomposition based keyphrase extraction technique to expand the textual queries. Our results articulate the fact that an insightful textual query expansion always improves retrieval performance for both textual or image retrieval. Also, we adopt optimum weight learning scheme to combine the modalities in a privileged way. We perform a comparative study with two well established keyphrase extraction techniques which are used for textual query expansion. A detailed set of experiments on a standard real world dataset is also carried out for the same.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.