Abstract
Topology optimization techniques are essential for manufacturing industries, such as designing fiber-reinforced polymer composites (FRPCs) and structures with outstanding strength-to-weight ratios and light weights. In the SIMP approach, artificial intelligence algorithms are commonly utilized to enhance traditional FEM-based compliance minimization procedures. Based on an effective generalized regression neural network (GRNN), a new deep learning algorithm of compliance prediction for structural topology optimization is proposed. The algorithm learns the structural information using a fourth-order moment invariant analysis of the structural topology obtained from FEA at different iterations of classical topology optimization. A cantilever and a simply supported beam problem are used as ground-truth datasets, and the moment invariants are used as independent variables for input features. By comparing it with the well-known convolutional neural network (CNN) and deep neural network (DNN) models, the proposed GRNN model achieves a high prediction accuracy (R2 > 0.97) and drastically shortens the training and prediction cost. Furthermore, the GRNN algorithm exhibits excellent generalization ability on the prediction performance of the optimized topology with rotations and varied material volume fractions. This algorithm is promising for the replacement of the FEA calculation in the SIMP method, and can be applied to real-time optimization for advanced FRPC structure design.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.