Abstract
We discuss neutral and charged complexes (biexciton and trion) formed by indirect excitons in layered quasi-two-dimensional semiconductor heterostructures. Indirect excitons -- long-lived neutral Coulomb-bound pairs of electrons and holes of different layers -- have been known for semiconductor coupled quantum wells and are recently reported for van der Waals heterostructures such as bilayer graphene and transition metal dichalcogenides. Using the configuration space approach, we derive the analytical expressions for the trion and biexciton binding energies as functions of the interlayer distance. The method captures essential kinematics of complex formation to reveal significant binding energies, up to a few tens of meV for typical interlayer distances ~3-5 A, with the trion binding energy always being greater than that of the biexciton. Our results can contribute to the understanding of more complex many-body phenomena such as exciton Bose-Einstein condensation and Wigner-like electron-hole crystallization in layered semiconductor heterostructures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.