Abstract
Indirect excitons (IX) in semiconductor heterostructures are bosons, which can cool below the temperature of quantum degeneracy and can be effectively controlled by voltage and light. IX quantum Bose gases and IX devices were explored in GaAs heterostructures where an IX range of existence is limited to low temperatures due to low IX binding energies. IXs in van der Waals transition-metal dichalcogenide (TMD) heterostructures are characterized by large binding energies giving the opportunity for exploring excitonic quantum gases and for creating excitonic devices at high temperatures. TMD heterostructures also offer a new platform for studying single-exciton phenomena and few-particle complexes. In this work, we present studies of IXs in MoSe2/WSe2 heterostructures and report on two IX luminescence lines whose energy splitting and temperature dependence identify them as neutral and charged IXs. The experimentally found binding energy of the indirect charged excitons, that is, indirect trions, is close to the calculated binding energy of 28 meV for negative indirect trions in TMD heterostructures [Deilmann, T.; Thygesen, K. S. Nano Lett. 2018, 18, 1460]. We also report on the realization of IXs with a luminescence line width reaching 4 meV at low temperatures. An enhancement of IX luminescence intensity and the narrow line width are observed in localized spots.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.