Abstract

In this paper, we study solar magnetic activity by means of a complex network approach. A complex network was built based on information on the space and time evolution of sunspots provided by image recognition algorithms on solar magnetograms taken during the complete 23rd solar cycle. Both directed and undirected networks were built, and various measures such as degree distributions, clustering coefficient, average shortest path, various centrality measures, and Gini coefficients calculated for all them. We find that certain measures are correlated with solar activity and others are anticorrelated, while several measures are essentially constant along the solar cycle. Thus, we show that complex network analysis can yield useful information on the evolution of solar activity and reveal universal features valid at any stage of the solar cycle; the implications of this research for the prediction of solar maxima are discussed as well.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.