Abstract

In this study, the semi-discretization technique is employed to establish a discrete representation of a modified Leslie-Gower prey-predator system that includes a Holling II type functional response. The dynamics of this model are then analyzed through the application of center manifold theory and bifurcation theory. We present comprehensive results for the local stability of the fixed points across the entire parameter space. Additionally, we provide sufficient conditions for the occurrence of flip bifurcation and Neimark-Sacker bifurcation. Besides, the system has experienced a flip bifurcation to chaos controlled using the method of chaos control, viz., state feedback method, pole placement technique, and hybrid control strategy. Furthermore, we provide specific conditions to ensure that bifurcation and chaos can be stabilized. Finally, numerical simulations are conducted to validate theoretical analysis and illustrate several new complex dynamical behaviors between two species.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.