Abstract
In this paper, a difference-algebraic predator–prey model is proposed, and its complex dynamical behaviors are analyzed. The model is a discrete singular system, which is obtained by using Euler scheme to discretize a differential-algebraic predator–prey model with harvesting that we establish. Firstly, the local stability of the interior equilibrium point of proposed model is investigated on the basis of discrete dynamical system theory. Further, by applying the new normal form of difference-algebraic equations, center manifold theory and bifurcation theory, the Flip bifurcation and Neimark–Sacker bifurcation around the interior equilibrium point are studied, where the step size is treated as the variable bifurcation parameter. Lastly, with the help of Matlab software, some numerical simulations are performed not only to validate our theoretical results, but also to show the abundant dynamical behaviors, such as period-doubling bifurcations, period 2, 4, 8, and 16 orbits, invariant closed curve, and chaotic sets. In particular, the corresponding maximum Lyapunov exponents are numerically calculated to corroborate the bifurcation and chaotic behaviors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.