Abstract
Abstract Basically enzymes are biological catalysts that increase the speed of a chemical reaction without undergoing any permanent chemical change. With the application of Euler’s forward scheme, a discrete-time enzyme model is presented. Further investigation related to its qualitative behaviour revealed that discrete-time model shows rich dynamics as compared to its continuous counterpart. It is investigated that discrete-time model has a unique trivial equilibrium point. The local asymptotic behaviour of equilibrium is discussed for discrete-time enzyme model. Furthermore, with the help of the bifurcation theory and centre manifold theorem, explicit parametric conditions for directions and existence of flip and Hopf bifurcations are investigated. Moreover, two existing chaos control methods, that is, Ott, Grebogi and Yorke feedback control and hybrid control strategy, are implemented. In particular, a novel chaos control technique, based on state feedback control is introduced for controlling chaos under the influence of flip and Hopf bifurcations in discrete-time enzyme model. Numerical simulations are provided to illustrate theoretical discussion and effectiveness of newly introduced chaos control method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.