Abstract

This article deals with the dynamical analysis of discrete-time Brusselator models. Euler’s forward and nonstandard difference schemes are implemented for discretization of Brusselator system. We investigate the local dynamics related to equilibria of both discrete-time models. Furthermore, with the help of bifurcation theory and center manifold theorem, explicit parametric conditions for directions and existence of flip and Hopf bifurcations are investigated. A novel chaos control method is implemented in order to control chaos in discrete-time Brusselator models under the influence of flip and Hopf bifurcations. Numerical simulations are provided to illustrate theoretical discussion and effectiveness of newly introduced chaos control strategy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.